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a b s t r a c t

A piecewise-homogenous elastic plate, reinforced with a semi-infinite inclusion, which intersects the
interface at a right angle and is loaded with shear forces is considered. The contact stresses along the
contact line are determined and the behaviour of the contact stresses in the neighbourhood of singular
points is established. Using methods of the theory of analytical functions and integral transformations the
problem is reduced to a system of singular integro-differential equations on the semi-axis. The solution
is presented in explicit form.
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Exact or approximate solutions of static contact problems for different regions, reinforced with elastic fastenings or thin inclusions, and
also coverings of variable stiffness have been considered previously, and the behaviour of the contact stresses at the ends of the contact
line have been investigated as a function of the variation of the geometrical and physical parameters of these components.1–8 The first
fundamental problem was solved for a piecewise-homogeneous plane, when a crack of finite length reaches the interface of the two bodies
at a right angle,9 and also similar problems for a piecewise-uniform plane when acted upon by symmetrical normal stresses on the crack
surfaces.10,11

In this paper we consider a piecewise-homogeneous elastic plate, reinforced with a semi-infinite inclusion and acted upon by a shear
force with a strength of �0

k
(x). With respect to the inclusion, which has the form of a thin slightly curved cover, it is assumed that it is

rigidly bonded to the plate and is stretched or compressed as a rod which is in a uniaxial stress state. It is assumed that the horizontal
deformations of the inclusion and the elastic piecewise-homogeneous continuous plate, loaded along the semi-axis with shear stresses,
are compatible. There is no normal contact stress at the joint.

The problem consists of determining the jump of the contact shear stresses �k(x) along the contact line and in establishing their behaviour
at singular points (i.e., in the neighbourhoods of the ends of the inclusion) and is formulated as follows: suppose the elastic body S occupies
the plane of the complex variable z = x + iy, which, along the line L = (−∞,1), contains an elastic inclusion with modulus of elasticity E0(x),
thickness h0(x) and Poisson’s ratio �0 and consists of two half-planes of different materials

soldered along the x = 0 axis. Quantities and functions, referred to the half-plane Sk, will be given the subscript k (k = 1, 2), while the boundary
values of other functions on the upper and lower edges of the inclusion will be given plus and minus superscripts, respectively (Fig. 1).

At the interface we have the condition’s of continuity

(1)
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Fig. 1.

On the sections lk we have the following conditions:

(2)

Here u(0)
k

(x) are the horizontal displacements of the points of inclusion, while the equilibrium conditions of the individual parts of the
inclusion have the form

(3)

where P0 and P are the unknown axial forces at the points x = 0 and x = 1 respectively (Fig. 2).
To determine these forces we must add the following relations to conditions (3)

(4)

where �(1)
x (x, y) is the horizontal component of the stress field in the half-plane S1.

From the KolosovMuskhelishvili formulae.12

Fig. 2.
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taking into account the conditions of continuity of the components of the displacements in the plate with the cover

we obtain

The solutions of these problems have the form

(5)

where Wk(z) and Qk(z) are analytic functions in the half-plane Sk.
By introducing the functions

(6)

where

we reduce the KolosovMuskhelishvili formulae to the form

Writing conditions (1) in terms of the functions (6), and acting on the equalities obtained with the singular operator

we obtain, with respect to the functions W1(z), �1(z), W2(−ż), �2(−ż), a system of four equations, the solution of which has the form

Using these relations, we obtain from formulae (5) and (6)

(7)
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where

Introducing expressions (7) into the equality

and taking the limit as z → x ± i0, we obtain a system of singular integro-differential equations

(8)

where

The functions T1(x) and T2(x) depend on the known functions �(0)
k

(x)(k = 1.2) and on the unknown constants P0 and P, i.e.,

where
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To solve system (8), when the stiffness of the inclusion varies linearly, i.e., E(x) = h|x|, x ∈ (−∞, 1), making the replacement of variables
t = e�, x = e� in system (8) and using a Fourier transformation,13 we obtain the system

(9)

where

Eliminating the function

(10)

from system (9), we obtain

(11)

where

It can be shown that

Condition (11) can be represented in the form

(12)

where
√

z + i and
√

z − i mean the branches, analytic in the planes cut along the rays, drawn from the points z = −i and z = i in the x direction,
and which obtain positive and negative values respectively on the upper side of the cut. By virtue of this choice of the branches the function√

1 + z2 becomes analytic in the strip −1 < Imz < 1 and takes a positive value on the real axis. Hence, the problem can be formulated as
follows: it is required to obtain the function �+(z), holomorphic in the Imz > 0 half-plane and which vanishes at infinity, and the function
F−(z), holomorphic in the half-plane Imz < 0, apart from points that are roots of the function G(z), which vanish at infinity and are continuous
on the real axis by condition (12).

The solution of the problem has the form

(13)
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where

The constant c is found from the condition F−(0) = 0(1). We obtain

From formulae (13) we obtain, by an inverse Fourier transformation, expressions for the required functions fk(x), after simple operations
we find �(1)

x (x, y) and, using formulae (4), we obtain relations for P0 and P. (In this case P0 = 0.)
It can be shown that F−(x + i0) = F−(x − i0) and, consequently, the function F−(z) is holomorphic in the half-plane, apart from points

which are zeros of the function G(z) in the upper half-plane.
We will investigate the behaviour of the contact stresses in the neighbourhood of the singular points z = 0 and z = 1. It can be shown

that, in the first equality of (13),

where F−
0 (x) is the Fourier transform of the function f0(x), continuous on the semi-axis x ≤ 0, apart, maybe, from the point x = 0, at which it

may have a logarithmic singularity. We obtain by an inverse transformation

We will now investigate the behaviour of the function �1(x) in the neighbourhood of the point z = 0. The poles of the function F−(z) in
the region D0 = {z:0 < imz < 1} may be zeros of the function

We will assume that i�0 is the simple zero, of least modulus, the function g(z) in the region D0. Then, applying Cauchy’s theorem on
residues to the function e−i�zF−(z) for the rectangle D(N) with boundary L(N), which consists of the sections

�0 < �0 < �1
0, g(i�1

0 = 0) we obtain

(14)

where �(N,�) → 0 as N → ∞. Taking the limit in equality (14) and reverting to the old variables, we obtain

Similarly, by determining the function �(t) from (10) and carrying out an inverse Fourier transformation, we obtain after calculations

where i	0(	0 < �0) is the simplest to zero, of least modulus, of the function in the region D0. If 	0 > �0 then
�2(x) = O(x�0−1), x → 0−.

If the functions g(z) and �(z) have no simple zeros in the region D0, the contact stresses may have a logarithmic-type singularity at the
origin of coordinates (if, for example, the point

z = i is a double zero of the function g(z) or �(z)).
It should be noted that the system of integro-differential Eq. (8) obtained reduces to a single equation in the following interesting cases.

Case 1. The semi-infinite inclusion has a constant stiffness or the stiffness varies as hx
(
 /= 1, h = const) and the inclusion reaches the
interface of the two materials. Then, by a Fourier transformation of the required function one obtains a boundary-value problem of the
theory of analytic functions with a shift for a strip (a Carleman type problem).

Case 2. The stiffness of the semi-infinite or finite inclusion varies linearly and the inclusion reaches the interface of the two materials. Then,
by a Fourier transformation of the required function one obtains an algebraic equation or a boundary-value problem of linear matching
respectively.

The use of methods of the theory of analytic functions and of integral transformations enables effective solutions of the above problems
to be obtained.
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